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Space-time adaptive processing (STAP) is a crucial technique for the new generation airborne radar for Doppler spread com-
pensation caused by the platform motion. We here propose to apply range cell snapshots-based recursive algorithms in order to
reduce the computational complexity of the conventional STAP algorithms and to deal with a possible nonhomogeneity of the data
samples. Subspace tracking algorithms as PAST, PASTd, OPAST, and more recently the fast approximate power iteration (FAPI)
algorithm, which are time-based recursive algorithms initially introduced in spectral analysis, array processing, are good candi-
dates. In this paper, we more precisely investigate the performance of FAPI for interference suppression in STAP radar. Extensive
simulations demonstrate the outperformance of FAPI algorithm over other subspace trackers of similar computational complexity.
We demonstrate also its effectiveness using measured data from the multichannel radar measurements (MCARM) program.
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1. INTRODUCTION

Space-time adaptive processing (STAP) is a technique for
suppressing clutter and jamming in airborne radar [1]. Em-
ploying an adaptive array antenna (spatial dimension) and
a coherent (pulse) processing interval (CPI), the joint spa-
tiotemporal domain optimization can provide far superior
interference mitigation compared to the classical moving
target indicator (MTI) methods [2]. In the optimum pro-
cessor, the weight vector which maximizes the signal-to-
interference-plus-noise ratio (SINR) is given by wopt =
κR−1s, where R is the covariance matrix of the interferences
and κ a constant gain. Since the covariance matrix is not
known, Brennan and Reed [3] proposed the sample matrix
inversion (SMI) based on replacing R by the sample aver-
age estimate R̂. In general, there are two computational crite-
ria that a practical implementation should ideally possess to
achieve sufficient interference suppression: a rapid conver-
gence (i.e., sample support size) to reduce nonhomogenous
samples that contribute for the interference covariance es-
timation and a low computational complexity for real-time
processing. Thus the SMI is a poor technique for the weight
computation because it converges slowly requiring a wide-
sense stationary (WSS) sample support of K = 2NM sam-
ples to obtain an SINR performance within 3 dB of the op-
timal one in the Gaussian case, with a computational load
of O((NM)3). The STAP interference covariance matrix is
in general of low-rank. Subspace techniques exploit the low

rank property of the interference covariance matrix to sup-
press the interferences. The key idea is the separation of
the overall space into interference subspace and noise sub-
space followed by a projection into the interference-free sub-
space to suppress the interference [4]. A common method
to obtain these subspaces is via singular value decomposi-
tion (SVD) of the interference-plus-noise covariance matrix.
Such methods can reduce the sample support requirement to
O(2r), where r is the rank of the covariance matrix, but at the
expense of a considerable computational complexity due to
the SVD O((NM)3). This complexity prevents real-time ap-
plications. To reduce the computational burden linked to the
SVD, many algorithms have been proposed in spectral anal-
ysis and spatial array processing literature. Among them, we
have recursive subspace tracking algorithms that update the
subspace estimate as long as a new snapshot is received. They
can be classified depending on their computational complex-
ities into O((NM)2r), O(NMr2), and O(NMr) operations at
each iteration (update) [5]. In this paper, only the class of
the lowest computational complexity referred to as the linear
subspace tracking algorithms is considered. The application
of such algorithms in STAP radar problems is novel, since to
our knowledge, the transcription of the recursive updating to
the range cells has not been successfully performed until now
in STAP radar problems. We more precisely propose the ap-
plication of the fast approximate power iteration algorithm
(FAPI) [6] in order to deal with the interference suppres-
sion in STAP radar. A comparison of the suggested algorithm



2 EURASIP Journal on Applied Signal Processing

1 2 � � � M
N

...

1

A
n
te
n
n
a
el
em

en
ts

� � � M

Pulses

1

�

�

�

K

R
an
ge
ce
lls

A snapshot vector
for a given range cell

x11
x21
...

xN1

x12
...

xN2
...

x1M
...

xNM

Figure 1: Illustration of the data cube and the construction of a
STAP snapshot vector.

to other existing linear subspace tracking algorithms such as
PAST, PASTd, OPAST [7, 8] is given. the proposed STAP-
FAPI algorithm is also tested on the MCARM real data [9].
This paper is organized as follows. In sections 2 and 3, we in-
troduce the data model and the STAP fundamentals, respec-
tively. The concept of the projection approximate subspace
tracking algorithms is revisited in Section 4. The fast approx-
imate power iteration algorithm is presented in Section 5. Af-
ter simulations both on synthetic and real data in Section 6,
a few concluding remarks are drawn in Section 7.

2. DATAMODEL

We consider a pulse-Doppler radar mounted on an airborne
platformmoving at a constant speed vp. The radar antenna is
a uniformly spaced linear array consisting ofN elements. The
radar transmits a coherent burst of M pulses at a constant
pulse-repetition frequency (PRF) fr = 1/Tr . The returned
signals are collected over K range directions of interest. The
collected data in a coherent processing interval (CPI) can be
represented by a 3D data cube as shown in Figure 1. The
returned MN-dimensional space-time vector at one range
of interest t represents the concatenated elements of a slice
in the data cube (see Figure 1). It may consist of the target
echo embedded into interferences such as jammer, clutter,
and thermal noise, and is given by [10]

x(t) = αtv
(
�t , νt

)
+ xc(t) + x j(t) + n(t), (1)

where the following hold.

(i) x(t) = [x1(t), . . . , xMN (t)]T is the array output vector.
(ii) αt and v(�t, νt) = b(�t)⊗ a(νt) are the complex target

attenuation factor and target steering signal vector, re-

spectively, associated with the spatial and Doppler pa-
rameters �t , νt [10] with

(1) a(νt) = [1 e j2πνt · · · e j2π(M−1)νt ]T is the tem-
poral steering vector (νt = ft/ fr , ft is the target’s
Doppler frequency);

(2) b(�t) = [1 e j2π�t · · · e j2π(N−1)�t ]T is the spa-
tial steering vector (�t = (d/λ) sin(θt), d is the
element separation distance and λ is the wave-
length, and θt is the target’s azimuth angle).

(iii) The radar clutter returns vector xc(t) is generated ac-
cording to Ward’s model [10]. It consists of a super-
position of a large number Nc of clutter sources that
are evenly distributed in a circular ring about the radar
platform. The location of the ith clutter patch is de-
scribed by its azimuth θi and normalized Doppler fre-
quency νi, the clutter component of the space-time
snapshot is given by

xc =
Nc∑
i=1

γivi
(
�i, νi

)
, (2)

where vi(�i, νi) is the space-time steering vector of the
ith clutter patch, and γi is its random amplitude as-
sumed to be Gaussian distributed (note that the range
index t is omitted in the following notations in the
model).

(iv) The component x j represents the narrowband noise
jamming signals. A commonly employed model for
such Nj jamming signals is [10]

xj =
Nj∑
m=1

γm ⊗ b
(
�m
)
, (3)

where γm contains the mth jammer amplitudes taken
at a pulse repetition interval (PRI)

(v) The component n is due to the thermal noise and it is
spatially and temporally white.

If we suppose that these components are uncorrelated then
the interference (clutter + jammer + thermal noise) space-
time covariance matrix R is

R = Rc +
Nj∑
i=1

R j(i) + σ2INM , (4)

where Rc is the clutter covariance matrix, Nj is the number
of jammers, R j(i) is the covariance matrix of the ith jammer,
σ2 is the noise variance, and INM denotes the identity matrix
of dimension NM ×NM.

3. STAP FUNDAMENTALS

STAP is a two-dimensional adaptive filtering technique pro-
posed as an alternative for one-dimensional techniques (spa-
tial or temporel methods) to suppress interferences (clut-
ter and jamming) and to achieve both target detection and
parameter estimation in airborne or spaceborne radar [10].
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Figure 2: Illustration of the principle of the STAP filtering for a
sidelooking radar [1].
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Figure 3: Space-time filter.

Figure 2 shows clearly that by using a 1D conventional fil-
ter, the slow moving target is masked by the clutter. The
data cube is generally interrogated for presence or absence
of targets. This is done by utilizing an adaptive 2D STAP
beamformer at each range cell t to maximize the SINR (see
Figure 3). The optimum weight vector which maximizes the
SINR is given by

wopt = κR−1vt, (5)

where R is the interference + noise covariance matrix as de-
fined in (4), κ is a constant gain, and vt is the space-time
target search steering vector.
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Figure 4: Eigenspectra for known STAP covariance matrices with
target azimuth angle at 0◦ and normalized Doppler frequency νt =
0.25; N = 12,M = 10, CNR = 40 dB, β = 1, JNR = 30dB.

In practice, the covariance matrix R is not known and
must be estimated from a given number of snapshots. A com-
monly used technique is the sample covariance estimation

R̂ = 1
K

K∑
t=1, t �=l

x(t)xH(t), (6)

index l corresponds to the cell under test (CUT) which must
be excluded from the covariance estimation to avoid target
cancellation. Substituting R by R̂ in (5), we get the well-
known SMI method

wSMI = κR̂−1vt . (7)

This method has many drawbacks as a high computational
complexity due to the matrix inversion, a slow convergence
(it requires 2NM i.i.d snapshots to achieve 3 dB of SINR
below the optimum), and high sidelobes. Thus this tech-
nique is not suitable for a real radar application. To over-
come this problem, the authors in [4] proposed a subspace
technique known as eigencanceller (EC). It requires O(2r)
snapshots (r is the rank of the interference covariance ma-
trix) to achieve an SINR of 3 dB below the optimum. EC ex-
ploits the low-rank property of the interference covariance
matrix to calculate the STAP weight vector. It is based on de-
composing the observation space into interference subspace
and noise subspace and then calculating a STAP weight vec-
tor that is orthogonal to the interference subspace. Figure 4
shows the eigenspectra of known STAP covariance matrices.
We note a clear distinction between the interferences eigen-
values and the floor of identical eigenvalues (noise subspace).
Brennan and Reed [3] found the following rule (Brennan’s
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Figure 5: A cut of the 2D STAP pattern at the radar look angle
(0◦) for EC, SMI, and optimum STAP. N = 12, M = 10, θt = 0◦,
νt = 0.2.

rule)1 for the number of the effective ranks of the space-time
interfernce STAP covariance matrix of a side-looking radar
r = N + β(M − 1).

The STAP covariance matrix can be written as

R = UΛUH + σ2VVH , (8)

where the diagonal of the r × rΛmatrix consists of the dom-
inant eigenvalues and U is the matrix of the corresponding
eigenvectors, V is the matrix of the remaining eigenvectors.
The weight vector of the eigencanceller is given by [4]

wec =
(
I−UUH

)
vt . (9)

Figure 5 shows that the EC using the covariance estimate (6)
has a performance near the optimum with low sidelobes and
short sample support compared to the SMI. Our objective is
to calculate an estimate of the interference subspace Û that
does not resort to the eigendecomposition of R̂ with lower
computational cost.

4. PROJECTION APPROXIMATE SUBSPACE
TRACKING ALGORITHMS

Projection approximation subspace tracking (PAST) [7] is
one successful subspace tracking algorithm due to its sim-
plicity and efficiency. Consider the following optimization
criterion:

J(W) = E
(∥∥x −WWHx

∥∥2) (10)

1 An extension to Brenann’s rule has been derived recently [11] and is given
by r = N + (β + J)(M − 1), where J denotes the number of jammers.

Initialization:

W(0) = Ir
O(NM−r)×r

, Z(0) = Ir

For t = 1, 2, . . . do
y(t) =W(t − 1)Hx(t)
h(t) = Z(t − 1)y(t)
g(t) = h(t)/

(
μ + y(t)Hh(t)

)

h̃(t) = yH(t)Z(t − 1)

Z(t) = (1/μ)
(
Z(t − 1)− g(t)h̃(t)

)
e(t) = x(t)−W(t − 1)y(t)
W(t) =W(t − 1) + e(t)g(t)H

End for

Algorithm 1: PAST algorithm.

with W ∈ CNM×r . The criterion in (10) has the following
properties which are summarized in the following theorem.

Theorem 1. The matrixW is a stationary point of J(W) if and
only if W = UdQ, where Ud ∈ CNM×d contains any distinct
eigenvectors of R, and Q ∈ Cd×d is an arbitrary unitary ma-
trix. At each stationary point, J(W) is equal to the sum of the
eigenvalues whose eigenvectors are not involved in Ud. More-
over, all stationary points of J(W) are saddle points, except
when Ud = U. In this case, J(W) attains the global minimum.

It is shown in [5] that minimizing (10) results in the fol-
lowing batch form of the PAST method:

W(t) = R(t)W(t − 1)
(
WH(t − 1)R(t)W(t − 1)

)−1
= C(t)Z(t),

(11)

where C(t) = R(t)W(t − 1) is the compression step as in the
power iteration method and Z(t) = (WH(t − 1)R(t)W(t −
1))−1 corresponds to the orthonormalization step [5]. A fast
recursive implementation of (11) is proposed in [7]. It is
based on the following projection approximation:

W(t) ≈W(t − 1). (12)

The complete pseudo code is depicted in Algorithm 1. It re-
sults from replacing the covariance matrix R(t) with its re-
cursive version R(t) = μR(t − 1) + x(t)xH(t), and imple-
menting recursively the inverse matrix Z(t) via the matrix
inversion lemma. Note that the author in [7] proposed an-
other version of the algorithm based on the deflation tech-
nique and referred to as the PASTd algorithm [7].

The PAST algorithm does generally not converge to an
orthonormal basis. The classic methods for imposing or-
thonormality are based on a QR or Gram-Schmidt proce-
dure. Such methods require at least O(NMr2) operations
per update. In [8], the authors proposed a fast (O(NMr))
orthonormal version of the PAST algorithm denoted by
OPAST. It consists of the PAST (11) plus an orthonormal-
ization step via the square root inverse [12] to force the or-
thonormality ofW(t) at each iteration

W(t) :=W(t)
(
WH(t)W(t)

)−1/2
. (13)
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Initialization:

W(0) = Ir
O(NM−r)×r

, Z(0) = Ir

For t = 1, 2, . . . do
Past main section:

y(t) =WH(t − 1)x(t)
h(t) = Z(t − 1)y(t)
γ(t) = 1/

(
μ + yH(t)h(t)

)
g(t) = γ(t)h(t)

OPAST main section:
ε(t) = γ(t)

(
x(t)−W(t − 1)y(t)

)

τ(t) = (1/(1/μ2)∥∥h(t)∥∥2)
(
1/
√
1 +

(
1/μ2

)∥∥ε(t)∥∥2∥∥h(t)∥∥2
)

e(t) = (τ(t)/μ)W(t − 1)h(t) +
(
1 +

(
τ(t)/μ2

)∥∥h(t)∥∥2)ε(t)
h̃(t) = yH(t)Z(t − 1)

Z(t) = (1/μ)Z(t − 1)− (1/μ)g(t)h̃(t)
W(t) =W(t − 1) + e(t)gH(t)

End for

Algorithm 2: OPAST algorithm.

Using the fact that W(t − 1) is an orthonormal matrix and
employing the orthogonality of e(t) withW(t − 1), (13) can
be written as

W(t) :=W(t)
(
Ir +

∥∥e(t)∥∥2g(t)gH(t)
)−1/2

. (14)

A fast implementation of the inverse square root in (14) is de-
scribed in detail in [8]2. The complete pseudocode of OPAST
is shown in Algorithm 2.

Note that the PAST algorithm in its first version by B.
Yang which inspired some other works [5, 8, 13], the recur-
sive updating of the inverse of the matrix Z(t) is

Z(t) = 1
μ

(
Z(t − 1)− g(t)h(t)H

)
(15)

which suggests that Z(t − 1) = ZH(t − 1). This is theori-
cally true. However, in a stochastic updating as it is done in
the PAST or OPAST algorithm, Z(t − 1) and ZH(t − 1) may
differ due to rounding errors causing the divergence of the
algorithms. To overcome this proplem, Yang [7] had forced
Z(t) to be Hermitian. This constraint was not considered in
the OPAST [8]. The proposed version in Algorithms 1 and 2
does not diverge for all simulations.

5. FAST APPROXIMATE POWER
ITERATION ALGORITHM

The approximate power iteration algorithm (API) consists of
a less restrictive approximation in implementing (11) than it
is done in PAST [7]. Indeed, in [6] it is assumed that

∏
W(t)

≈
∏

W(t−1)
, (16)

2 One way to get the inverse square root is via the following identity:
(I + xxH )1/2 = I + (1/‖x‖2)(1/√1 + ‖x‖2)− 1xxH .

Initialization:

W(0) = Ir
O(NM−r)×r

, Z(0) = Ir

For t = 1, 2, . . . do
PAST main section:

y(t) =W(t − 1)Hx(t)
h(t) = Z(t − 1)y(t)
g(t) = h(t)/

(
μ + y(t)Hh(t)

)
FAPI main section:

ε2(t) = ∥∥x(t)∥∥2 − ∥∥y(t)∥∥2

τ(t) = ε2(t)/
(
1 + ε2(t)

∥∥g(t)∥∥2 +
√
1 + ε2(t)

∥∥g(t)∥∥2
)

η(t) = 1− τ(t)
∥∥g(t)∥∥2

ỹ(t) = η(t)y(t) + τ(t)g(t)
h̃(t) = Z(t − 1)ỹ(t)
ε(t) = (τ(t)/η(t))(Z(t − 1)g(t)− (h̃(t)Hg(t))g(t))

Z(t) = (1/μ)
(
Z(t − 1)− g(t)h̃(t)H + ε(t)g(t)H

)
e(t) = η(t)x(t)−W(t − 1)ỹ(t)
W(t) =W(t − 1) + e(t)g(t)H

End for

Algorithm 3: FAPI algorithm.

where
∏

W(t) = W(t)WH(t). Equation (16) is equivalent to
writing

W(t) ≈W(t − 1)Θ(t) (17)

with Θ(t) � WH(t − 1)W(t).
Using this modification, the normalization matrix Z(t)

and the subspace matrixW(t) (see Algorithm 1) can be esti-
mated recursively as follows (for more details, the reader can
refer to [6]):

Z(t) = 1
μ
ΘH(t)

(
Ir − g(t)Hy(t)

)
Z(t − 1)Θ−H(t), (18)

W(t) = (W(t − 1) + e(t)gH(t)
)
ΘH(t), (19)

where Ir denotes the r × r identity matrix, e(t), g(t) and y(t)
are as defined in the PAST algorithm (Algorithm 1).

By using (19) and keeping in mind thatW(t − 1) and its
updateW(t) are orthonormal matrices in addition to the fact
that the error vector e(t) is orthogonal toW(t−1), thenΘ(t)
can be written as

Θ(t) =
(
Ir +

∥∥e(t)∥∥2g(t)gH(t)
)−1/2

. (20)

We can note that by settingΘ(t) = Ir , both matrices Z(t)
andW(t) as defined in (18) and (19) reduce to those of PAST
algorithm. However, for the OPAST algorithm, the Θ(t) ma-
trix is kept forW(t).

FAPI is a fast implementation of API (O(NMr)) which
consists in substituting Θ(t) by a faster computation of the
inverse square root. The pseudocode of the algorithm is given
in Algorithm 3.
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6. SIMULATION RESULTS

6.1. Example 1: simulated data

The simulation model consists of a uniform linear array of
N = 12 elements with M = 10 delay taps at each element.
The clutter is Gaussian distributed with clutter-to-noise ra-
tio CNR = 20 dB at each element (no jammer and internal
clutter motion ICM are present). The target is assumed in the
main beam direction 0◦ with SNR = 0 dB. As a measure of
performance, we use the SINR loss as defined below:

SINRLoss = σ2

NM

∣∣wHvt
∣∣2

wHRiw
. (21)

w denotes the STAP weight vector using the subspace esti-
mates. All the simulations were carried out over 20 Monte
Carlo runs, the forgetting factor is μ = 0.99 for all the al-
gorithms. The rank of the interference subspace is approxi-
mated via Brennan’s rule [10] (r = N + β(M − 1)).

Figures 6 and 7 show the SINRLoss as a function of the
sample support. In this example, both PAST and PASTd re-
quire an orthonormalization step to accelerate their con-
vergence.3 This is performed with the Gram-Schmidt pro-
cedure which needs extra computation of O(NMr2). The
PASTd algorithm outperforms PAST algorithm because un-
like PAST, PASTd is based on the sequential estimation of
the principal components which mitigate the effect of the
eigenvalue spread. FAPI converges much faster than all the
algorithms and it exhibits a very close performance to the
EC. This can be justified by the less restrictive approxima-
tion in FAPI W(t)W(t)H � W(t − 1)W(t − 1)H rather than
W(t) �W(t−1) in the projection approximation algorithms.
As expected, the OPAST algorithm performance is in be-
tween PAST and FAPI algorithms. In Figure 7, we show a cut
of the SINR loss at the main beam look angle as a function of
the normalized Doppler frequency using K = 50 snapshots.
We can note that the FAPI algorithm notch filter has a very
close performance to that of the EC which is near the opti-
mum filter (for which the interference-plus-noise covariance
matrix is known) compared to the loaded SMI [15].

6.2. Example 2: experimental data

In this example, we briefly evaluate the performance of FAPI
algorithm using data from the multichannel airborne radar
measurements (MCARM). The sensor is an L-band phased
array antenna using 22 elements arranged in a 2 × 11 grid
(N = 22). Each CPI comprises 128 pulses (M = 128). There
are 630 independent range samples available for the training-
data support. The subject data comes from flight 5, acqui-
sition 575. Figure 8 shows the 2D spectrum of the MCARM
radar data [9] at range cell 200, we can clearly note themono-
static STAP clutter ridge. Its slope is approximately β � 1.

3 The slow convergence is mainly due to the high-input eigenvalue spread
of the STAP covariance matrix which is a problem inherent in adaptive
algorithms [14] (λmax � CNR + 10 log(NM)(dB)), see Figure 4.

0 100 200 300 400 500 600

Number of training samples

�40

�35

�30

�25

�20

�15

�10

�5

0

SI
N
R
lo
ss
(d
B
)

EC
PAST
PASTd

OPAST
FAPI

Figure 6: SINR loss as a function of the training data support K .
Forgetting factor μ = 0.99.

�0.5 �0.4 �0.3 �0.2 �0.1 0 0.1 0.2 0.3 0.4 0.5

Normalized Doppler frequency

�45

�40

�35

�30

�25

�20

�15

�10

�5

0

SI
N
R
lo
ss
(d
B
)

Optimal
EC

FAPI
LSMI δ = 10σ2
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quency.

Figure 9 depicts power versus range at pulse 1, the first range
cells represent transmit leakage [16] and are not used for
our simulations. In this example, only range cells from 200
to 600, N = 14 channels, and M = 16 pulses are used for
the performance evaluation. We inject artificially a target at
range cell 290 at angle bin 65 corresponding to 0◦ (broad-
side) and normalized Doppler frequency of 0.3 with ampli-
tude 0.00003. Because of the nonavailability of the noise level
of the antenna in the MCARM data, we prefered to use the
modified sample matrix inversion (MSMI) as defined below:

η =
∣∣wHx

∣∣2
wH R̂w

. (22)
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Figure 9: Output power of MCARM versus range at pulse 1.

Figure 10 shows the eigenspectrum of the sample covariance
matrix, the spectrum does not show a sharp cutoff at the in-
terference rank value as for simulated data. There is a gradual
decrease, this is mainly due to the crabbing angle. We choose
a rank of r = 90 corresponding to noise power of −55 dB4

rather than the rank suggested by Brennan’s rule which is
r = 14− (16− 1) = 29.

Figure 11 shows the MSMI statistics over range. We note
that the target is visible for both EC and FAPI with the same
level of power.

7. CONCLUSION

In this paper, the application of fast recursive subspace algo-
rithms for interference mitigation in STAP radar is consid-
ered. We evaluate the performance of a recently developed

4 The choice of this noise power level corresponds to realistic values [9].
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Figure 10: Eigenspectrum using the sample covariance matrix of
the MCARM data.
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Figure 11: MSMI statistics over range for EC and FAPI, injected
target at range cell 290.

fast subspace algorithm known as FAPI. The results of sim-
ulation using synthetic data and measured data show that
FAPI algorithm approaches the same performance of the EC
with a linear computation complexity (O(NMr)) rather than
(O(NM)3) for the EC.
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